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Based on a one-dimensional model, a perturbation expansion is carried out to solve the equations
describing a weakly nonlinear laser pulse in a plasma in which the electrons are treated relativistically
and the plasma frequency is much less than the laser frequency. To lowest order, the expansion yields
two coupled equations for the vector and scalar potentials. For a pulse which is long compared with a
plasma wavelength, the coupled equations reduce to the nonlinear Schrédinger equation with well-
known soliton solutions. An initial pulse of hyperbolic-secant shape which is short compared with a
plasma wavelength broadens and acquires a characteristic asymmetric shape with a steep trailing edge
and a much broader, gently sloping front portion, and has a frequency and wave-number shift which
vary from a positive value at the front to a negative value at the rear of the pulse. The peak and rear
part of a short pulse are strongly influenced by nonlinear effects, whereas the front is governed primarily
by linear dispersion. The average pulse frequency continually decreases as energy is lost to the plasma
wake. The wake-field phase velocity is shown to be approximately equal to the velocity of the pulse
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I. INTRODUCTION

A high-power laser pulse propagating through a plas-
ma produces a wide variety of interesting phenomena.
These include plasma wake-field generation, relativistic
self-focusing, frequency shifts and harmonic generation.
Plasma wake fields are of importance for the understand-
ing of beam propagation in the ionosphere, the evolution
of bursts from pulsars, and for applications as high-
gradient accelerators [1-4]. Even small relativistic
corrections in the plasma electron motion can produce
significant self-focusing of a laser beam [5]. Frequency
shifts [6] and harmonic generation may have applications
in plasma diagnostics or as coherent radiation sources.

In the present work, we carry out a perturbation ex-
pansion to solve the one-dimensional equations describ-
ing a weakly nonlinear laser pulse propagating in a plas-
ma in which the electrons are treated relativistically and
the ions are assumed stationary. Although the basic
equations on which our analysis is based are identical to
those used in the recent work by Sprangle, Esarey, and
Ting [7], we do not, however, use the quasistatic approxi-
mation. Because of the use of a perturbation expansion,
our results are applicable only to small-amplitude laser
pulses. Also, transverse self-focusing is not included be-
cause the model is one dimensional. In spite of these re-
strictions, several interesting results are obtained.

It is shown that the equations governing the envelope
of the laser pulse have soliton solutions provided the
pulse length is long compared with a plasma wavelength
and the initial pulse exceeds a certain threshold value.
Even though relativistic effects on the electrons are small,
they are nevertheless significant because it is shown that a
model which treats the electrons nonrelativistically does
not yield solitons.

For a pulse which is not long compared with a plasma
wavelength, numerical solutions show that the envelope
of a symmetric initial pulse typically broadens and
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evolves into a characteristic asymmetrical shape with a
gradually sloping front portion and a relatively steep rear
portion. A nonlinear frequency shift is produced, which
varies spatially over the pulse. It is shown that the aver-
age pulse frequency continually decreases as the pulse
loses energy to the wake. The relationship between the
wake-field phase velocity and the pulse velocity is con-
sidered.

The accuracy of the quasistatic approximation [7] as
applied to the weakly nonlinear laser pulse is assessed. It
is found that, in the perturbation expansion, the approxi-
mation gives correct results through the two lowest or-
ders, but that the higher-order terms are in error. Thus,
for example, the strength of the third-harmonic radiation
is not given correctly if the quasistatic approximation is
used.

II. PERTURBATION EXPANSION

We consider the one-dimensional case in which all field
and plasma variables depend on time ¢ and on a single
coordinate z. The basic equation for a linearly polarized
laser pulse interacting with a cold relativistic plasma can
be written in the form

Azz— Arp=Qlnd/y, (1
bzz=0%n—1), )
ny+(nu);=0, (3)
rvu)r=éz—vz, 4)
y=[(1+42)/(1—u?]"*, (5

where the subscripts denote partial differentiation. In
these equations, A is the vector potential normalized to
mc /e (in SI units), and ¢ is the scalar potential normal-
ized to m0c2/e, where mg, e, and ¢ are the electron rest
mass and charge and velocity of light, respectively. The

1249 ©1993 The American Physical Society



1250 H. H. KUEHL, C. Y. ZHANG, AND T. KATSOULEAS 47

electron density normalized to the unperturbed electron
density is denoted by n, and the longitudinal electron
fluid velocity normalized to c is denoted by u. The trans-
verse electron fluid velocity normalized to c¢ is given by
u, = A/y. The ions are assumed to be stationary. The
normalized spatial coordinate and time are defined by

Z:koz ’ T:koct N (6)

where z is the spatial coordinate, ¢ is the time, and k the
fundamental laser wave number. The linear dispersion
relation is

w2=w;+k202 N 7

where o, =(nye?/eym,)!”?

» is the electron plasma fre-
quency, and n, and €, are the unperturbed electron densi-
ty and permittivity of a vacuum, respectively. The funda-
mental laser frequency w, and wave number k in the
linear approximation are therefore related by
wp=w)+kic’. In the subsequent analysis, we assume
that

w,/koc <<1. (8)

Therefore, it follows from Egs. (7) and (8) that wy=kgc
and @,/wy<<1, ie., the plasma is very underdense,
which is usually the case in laser-plasma interactions
[7-9]. It is convenient to define the normalized wave
number, frequency, and plasma frequency as

K=k/ky, Q=w/koc, Q,=w0,/kqc , 9)
whereby the dispersion relation (7) becomes
V=K>+Q] . (10)

From (8) and (9), it is evident that Qf, << 1. Formally, as
suggested in Ref. [8], we take (1, to be of order €, where €
is the expansion parameter on which the perturbation
theoretic solution of Egs. (1)—(5) derived subsequently is
based. Thus, for the purposes of this formal expansion
procedure, we make the replacement Q, —»er, wherever
1, appears in the equations. It may be verified that, ex-
cept for different normalization, Eqs. (1)—(5) are com-
pletely equivalent to Egs. (1) and (2) of Sprangle, Esarey,
and Ting [7].

In order to derive the solution of Egs. (1)—(5) for case
of weakly nonlinear laser pulse, the reductive perturba-
tion method is used [10,11]. It is assumed that to lowest
order, the amplitude of the vector potential is of order €,
which is the formal expansion parameter. The expan-
sions

A= ﬁ‘, ematm v
m=1

n=1+ i €™n'™ (12)

m=1

u= § emum | (13)
m=1

¢: - e.m¢(rn), (14)
m=1

are assumed, where A", nU™) 4™ and ¢ are Fourier
series given, for example, by

A= S AI™(E Pexplild) (15)

I=—o

where 4/™= A'")* because 4™ is real. The quantities
n'™_ (M and ¢(’") are given by similar series. The slow
variables £ and T are given by

E=e(Z—Q,T), (16)
r=€'T, 17

where ) is the normalized group velocity 92 /3K evalu-
ated at the normalized fundamental wave number K,=1.
The variable £ is proportional to the spatial coordinate in
the frame moving with the linear group velocity. The
fast variable 6 is given by

0=K,Z —Q,T=Z —Q,T, (18)

where K,=1 because of the normalization defined in (9),
and Q;=Q(K,)=Q(1). The variable 0 is proportional to
the spatial coordinate in a frame moving with the linear
phase velocity. The formulation given by Egs. (11)—(18)
is standard for the reductive perturbation method [10,11]
except that the usual definition of 7(7=¢€>T) is replaced
by Eq. (17) because of the smallness of the normalized
plasma frequency as explained in Appendix A. From
Egs. (16) and (17), one obtains

d d , 0 4 O

—_— = — —_— _ 1

3 QOBG eQOa§+e 3, (19)
d 0 d

—=—+e— . 20
3Z 086 @ of 20

Using Egs. (19) and (20), Egs. (1)-(4) become

—Q2 A+ €(Q, /0 Age+€2Q0 4,
+e200A4,,—€4,,=Q%(nd/y), 1)

boo+ €20+ 2= Q2 (n —1) , (22)

[n(QO——u)]9+€[n(96—u)]§=e4nT , (23)

[y(1—=Qgu)—¢lo+ely(1—Qou)—¢l:=—€*(yu),, (24)

where Eq. (10) has been used, and the replacement
Q,—€Q, has been carried out in Eqgs. (1), (2), and (10).
In Egs. (21)—(24), the quantities €, and ( are obtained
from Eq. (10) (with O, —€Q,) as

Qo=Q(K =1)=(1+€*Q2)"?

=1+1eQ—Lefp+ -, 25)
Q= %‘;— =Q, =112+ '+ - . (26)
K=1

At order ¢, it is assumed that A ‘1’=~0 but that
n(l):u(l):¢(l):O’ 27

because the perturbations in electron density, longitudi-
nal electron velocity, and scalar potential are generated
by 4V through the nonlinear terms in Egs. (1)—(4) and
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are therefore of order higher than first. Hence, with u!’=0, Egs. (5), (11), and (13) yield

’}/:1‘*‘%62(A(”)2+63A(1)A(2)+64[A A(3)+ l(A(Z))Z

Spo4 (1) 4(4) 2) 4B3)4 ., (2), (3) (13 4
+e A4V A+ 4P AP+ Py P —1(41) 4

and with n'V'=41=0, Egs. (5), (11), (12), and (13) yield
?_1'1“62[—% AWy @)
+64[—A(I)A(s)—%(A(Z))2+%(A(1))4
_._%(u(2))2_%(A(l))zn(2)+n(4)]+ e (29)

The procedure is to insert Egs. (11)—(14) and (25)—(29)
into Eqgs. (21)-(24) and collect terms of the same order in
€. Since € only serves as a bookkeeping parameter, it is
set equal to unity after the procedure is completed.

A. Order €

At order €, Egs. (22)-(24) are satisfied because of (27),
and (21) gives A4 =— AV, which, using Eq. (15) yields

A4 =0and
A= 4D exp(—if)+ 4 Vexp(i0) , (30)
where 4 Y!] are functions of £ and 7 to be determined.

B. Order €?

At order €%, Eq. (21) gives 4% =— 4?), which yields
AP = 4% =0and

AP=A% exp(—i0)+ AP exp(—ib) . (31
Equation (22) gives ¢{Z) =0, which yields

#¥=0, I1#0. (32)
Equation (23) gives (n?—u?)),=0, which yields

nP=y42 | 150 . (33)
Equation (24) gives [(4")?/2—u?—¢?],=0, which
yields

u(2):(A(l))2/2_¢(2) , 10 . (34)

C. Order €*

At order €, Eq. (21) gives
Q(Ag+4)=243+02 4}
+Q2(AD2/2—n 214D . (35)

For I =0, 2, and 3, Eq. (35) yields

AP =4P=4P =0, (36)
w'here Egs. (32)-(34) have been used. For [/ =1, Eq. (35)
gives
247+ AL+ Q42 2—n P4V =0, (37)

( (2)) _é_(A(l))4]

- (28)

[

where Eqgs. (32)-(34) have been used. Equation (22) gives
#% =0, where Eq. (32) has been used. Thus

=0, 170 . (38)
Equation (23) gives
(n(B)_u(3)) +(n(2)_u(2))§=0 . (39)

For [ =0, Eq. (39) yields n{?) =u {2, which, together with
Eq. (33), shows that

n(l)_—:u(Z) . (40)
For /50, Egs. (39) and (40) yield
n¥=y43  [5£0 . 41)

Equation (24) gives
(A(I)A(Z)_ _¢(3))0+[(A(l))2/2_u(2)_¢(2)]§=0
42)

For [ =0, this yields u{>=[(4'")?),/2—¢*, which,
with Egs. (34) and (40), shows that

=y @=( 412/ _g2) 43)
For /50, Eq. (42), together with (38) and (41), yields
n=yP=4D042 150 . (44)
Inserting Eq. (43) into (37), one obtains
i4)+102 40 +10267 4V =0 . (45)

D. Order €*

At order €%, Eq. (21) gives
24P+ 0242 + 2P 4P
=Q2(AY+AD) 24D Q24D 4D -y D) 4D

(46)

where Eq. (43) has been used. For /51, Eq. (46), together
with Egs. (30), (31), (36), and (44), yields

AY=0, I#1. 47
For I =1, Eq. (46) gives
ZlA(2)+QzA(12§)§+QZ Z)A(12)
:_ZA(X;._Q;(A(”A(Z)“n(3))oA(11) , (48)
where Eq. (44) has been used. Equation (22) gives
bR +026P=02(41)2/2, (49)
where Eq. (38) has been used. For I =0, Eq. (49) yields
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¢ +QZ¢(2)=QZ|A(11)I2 , (50)

where Eq. (30) has been used together with 4= 41)*.
For [ =1, 3, and 4, Eq. (49), together with Egs. (30) and
(32), yields

$i"'=¢5""¢i"=0 (51)
whereas for / =2, one obtains
¢=—02(4{")/8 . (52)
Equation (23) gives
(n‘4’+().2 @ /3 —y @ — @y @) 4 (3 u(s))gzo )
(53)

For [ =0, Eq. (53) yields n§’’ =u ), which, with Eq. (41),
shows that

n(3)=u(3) . (54)

For /70, Eq. (53) gives
(4) —

nY=u{—Q2n{?/2+[(nP?],, 170, (55)
where n'? is given by Eq. (43). Equation (24) gives
{A(I)A(3)+i(A(Z))2+lu(2)[u(2)_(A(l))Z_Q;]

—%(A(l __¢(4)}

(AP 4P =y —¢3),=0 (56)

]
E. Order €’

At order €, Eq. (21) gives

2A +QZA(3)+QZ¢(2)A(3)-—-QZ(A(5)+A(5)) 2A(2)
_QI27¢(03)A(2)+Q12,A“)[71

where Egs. (43) and (57) have been used. With the use of
Egs. (30), (31), (36), (59), and (60), Eq. (62) yields

AP =49 =40 =49 =0, (63)
A9 =—302(4") /64 . (64)
Equation (22) gives
b+ 2068 + G+ Q2o =07 4V 4D (65)

where Egs. (38) and (57) have been used. For / =0, Eq.
(65) yields
¢0§§+QZ _QZ(A(_I)IA(2)+A(1)A(2)) (66)

where Egs. (30) and (31) have been used. Using Egs. (51)
and (52), Eq. (65) yields

¢ =95 =4 =9¢5"=0, (67)
¢27'=—Q{i[(4{")?]+24" 4P} /8 . (68)

Equation (23) gives
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For 1 =0, Eq. (56) yields u{> =(4" 4?),—¢, which
together with Egs. (38), (44), and (54) shows that

n(3):u(3)=A(l)A(2)_¢é)3) . (57)
For [0, Eq. (56), together with (40) and (57), yields
u1(4’=[A“)A(3)+%(A(2))2+%(n(2))2
_%(A(l))4_%(A(l))2n(2)
—%an(z’—qb“)], , 1#0. (58)
From Egs. (55) and (58), it can be shown that
nM=uP=nP=4yP=nP®=0,
(59)

u24)=_,(A(11))2/4 ,
u =n +(4V PP+ 14V )(Q) —44141))

ZA(II)A(ls)+%(A(12))2—-;—Q‘2,(A(1”)2

—(A4VPal . (60)
Inserting Eq. (57) into (48), one obtains
A+ ’9214(1252‘*"%9,2,%2)14(12)
=—Al 10264 . (61)
QA 24l
I— AW AD— 1 gD g2 4 D2 — L(¢P)], (62)
I
[nmu”’—nm(%ﬂf,—u(z’)—n‘5’+u‘5’]9
—[n““—u“”—n‘z’(%ﬂf,+u‘2’)]§=0 )
For I =0, Eq. (69) yields
n{,""=u§,‘”+012,n§)2)/2+[(n(2’)2]0 ,
which, with Eq. (55), shows that
n‘4’=u“”+(n‘2’)2—ﬂf,(1——280,)n(2’/2 (70)

where 8, is the Kronecker delta which is unity when
=0 and vanishes for /0. The complete Eq. (24) at or-
der €’ is not given here because of its length, but the /=0
part is

u(()‘“=[A(1)A(3’+-2‘—(A(Z))2+%(n(2))2

2
_—é-(A(l))“'—%(A(l) n(2)+%9§n(2)_¢(4)]0 ,

which, with Eq. (58), shows that
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u(4)=A“)A(3)+%(A(Z))2+%(n(2))2
"%(A(”)“'—%(A(”)zn(Z)—(ﬁM)
—102(1—28,,)n? . (71)

In summary, the reductive perturbation method
through order € has been applied to Egs. (21)-(24),
which results in a hierarchy of equations. The first level
of the hierarchy is comprised of Egs. (45) and (50), which
are two coupled equations for 4! and ¢{?’, and Eq. (43),
which gives n'? and 4 ‘? in terms of 4" and ¢{*. Solu-
tions of Egs. (45) and (50) are presented in Secs. IIT and
IV. The second level in the hierarchy is comprised of the
coupled Eqgs. (61) and (66) for 4{* and ¢{, together with
Eq. (57), which gives n‘*) and «® in terms of 4", 4{?,
and ¢$>. Because some of the equations become increas-
ingly lengthy with increasing hierarchy level, the reduc-
tive perturbation procedure has not been carried out
completely here beyond the second level. Nevertheless,
from the equations that were presented, the following in-
teresting results regarding the harmonic content of the
field and plasma variables have been derived. The vector
potential has no harmonics until order € where the
third-harmonic component 4’ appears and is given by
Eq. (64). Through order €, the scalar potential has no
dependence on the fast variable 6, i.e., only the / =0 com-
ponents @2’ and ¢ are present; at order €* and € (and
presumably at higher order) it also has second-harmonic
(I =2) components ¢5* and ¢}° given by Egs. (52) and
(68) in addition to the / =0 components #§" and ¢ .
The electron density and longitudinal velocity have both
1 =0 and 2 components through order €*. In addition, at
order €*, the longitudinal electron velocity has a fourth-
harmonic (I =4) component u$* given by Eq. (59).

The foregoing results are based on the assumption that
@, /0wy <<1. It is interesting to compare the results of a
perturbation expansion based on the assumption that
wp, /g is of order unity. In that case, the normalized
group dispersion € is of order unity, and therefore, as
noted in Appendix A, the linear solution suggests that
the variable 7 given by Eq. (17) should be replaced by
7=¢*T. A perturbation expansion based on this scaling
has been carried out by Kates and Kaup [12] which, for
the present assumptions of immobile ions, cold electrons,
and linear polarization, yields the lowest-order results (in
the present notation)

QZ
iA(ll) pA(ll)
T2
Q (3 2
+ 2 |=— [4{"]?P4{"=0, (72
200 |2 (405—Q))
¢=14"1, (73)

n(22)=u(22)=(A(11))2/2 , (74)

where Q§=1+Q} from Eq. (10) with Ko=1. Thus, the
coupled equations (45) and (50) for A{! and ¢{* are re-
placed by the nonlinear Schrodinger equation (72) for
A", whose solution then yields ¢{> directly from Eq.

n@®=u@ =0,

(73). Moreover, Eq. (74) yields vanishing dc parts of n'?
and u'?, in contrast to Eq. (43), which generally gives a
nonzero dc part. It is shown in Sec. III that, for a pulse
which is long compared with a plasma wavelength, Eqgs.
(72)-(74) with Q, <<1 give results which coincide with
those of the expansion presented here. For a short pulse
with Qp << 1, however, the results of Sec. IV show that
the coupled equations (45) and (50) give results which
differ markedly from those of Eqgs. (72) and (73). In par-
ticular, Egs. (45) and (50) yield short-pulse properties in-
cluding asymmetrical shape, frequency and wave-number
shifts, and wake-field generation which are not repro-
duced by Egs. (72) and (73).

III. LONG PULSE

To lowest order, the vector and scalar potentials are
governed by the coupled equations (45) and (50). Based
on these equations, we consider first the case in which the
laser pulse has a length / which is long compared with the
plasma wavelength, ie., ®,//c>>1. To justify our
neglect of the ion motion, it is required, however, that the
pulse duration be short compared with the ion period,
ie., cop,-l /c <<1. Some previous results for this case are
summarized in Ref. [13]. In this section, we briefly indi-
cate how the present theory yields results which are in
agreement with some of the more important results of
previous workers. Using ¢(z:~@('/L?, where L =kl
and [ is the characteristic envelope scale length, then the
ratio of the second term on the right-hand side of Eq. (50)
to the first term is of order Q;LZ—'—‘a)]Z,I 2/¢?>>1, whereby
Eq. (50) gives approximately

¢y’ =141, (75)
and thus Eq. (45) becomes approximately
id{)+102 4 +1021 4 *l4 =0, (76)

which is the nonlinear Schrodinger (NLS) equation [14].
Using Eq. (75), Eq. (43) yields

né)2)=u§,2)=0 , n§2’=u‘22>=(A‘1”)2/2 . (77)

It is noted that if we assume that 1, <<1 and therefore
neglect 7 compared with Q5~1 in Egs. (72)-(74), then
we obtain Egs. (75)-(77). Therefore, for the case of a
long pulse, the lowest-order results of Kates and Kaup
[12] are identical to those derived here. Also, Eq. (76) is
equivalent to the NLS equation derived in Ref. [13] ex-
cept that the coefficient of the second (dispersive) term in
Ref. [13] is 1 (in the present notation) instead of Q; /2,
which is appropriate for w~w, rather than 0>>0w,, as
assumed here.

It is well known that the NLS equation (76) admits sol-
iton solutions [14-16]. The simplest single-soliton solu-
tion is

A\ = A sech(A£/2'?)exp(iA*QLT/4) , (78)

where A is a constant. Equation (78) represents a non-
linear pulse traveling at the linear group velocity €,
which preserves its shape because of a balance between
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dispersion and nonlinearity. A similar analytic result has
been obtained recently by Kaw, Sen, and Katsouleas [17]
for a small-amplitude circularly polarized wave. For a
large-amplitude circularly polarized wave, Kaw, Sen, and
Katsouleas [17] obtain solitary-wave solutions numerical-
ly. It is of interest to compare the characteristic time
scale of the soliton given by Eq. (78) with that of relevant
parametric instabilities. From Eq. (78), it is evident that
the characteristic time on which the soliton varies is
7,~4A4 720, % On the other hand, for a long pulse, the
characteristic time on which stimulated Raman back-
scattering occurs is approximately that obtained for un-
bounded plane waves, given (in normalized units) by [18]
TR~ A7'Q,?/2. Thus, 5 /7,~ AQ"?/8, which is
small compared with unity because 4 <<1 and , <<1.
Therefore, it follows that the long-pulse soliton given by
Eq. (78) would probably be difficult to observe experimen-
tally because the instability due to stimulated Raman
backscattering occurs on a shorter time scale than the
soliton time scale.

IV. ARBITRARY-LENGTH PULSE

For a pulse which is not long compared with a plasma
wavelength, it is necessary to solve Egs. (45) and (50) nu-
merically. It is noted that Egs. (45) and (50) are invariant
under the transformations

1) — 1) 2)— 224(2)
A=A, gp=ee,

..._é:_ J— — ’
&= — . T , Q,=eQ,,

(79)

m&’q\

i.e., the unprimed variables in Eqgs. (45) and (50) can be
replaced by the primed variables defined by (79). Equa-
tions (45) and (50) in the primed variables may be solved
w1th Q of order unity and an initial function

g, T’— ) whose amplitude is of order unity and
whose dependence on the spatial coordinate £’ has a scale
length of order unity. The resulting solutions 4" (&’,7')
and ¢ (&',7') will typically have amplitudes of order
unity, and will also have temporal and spatial scales of
order unity. These solutions can then be scaled by means
of the transformations (79) to include the smallness of

A", ¢, and Q,, and the long scales of 7 and £. It is
1mp0rtant to note that the parameter Q,L =w,l/c=k,l,
which determines the ratio of the envelope scale length /
to the plasma wavelength A, is invariant under the given
transformations, i.e., Q,L =Q;,L’. Figures 1-3 show the
magnitude | 4{"| and phase a of the vector potential,
and the scalar potential ¢{?’ as obtained numerically from
the coupled equations (45) and (50) for 2,=1 and an ini-
tial condition given by

D(g,7=0)= A sech( 4,£/2'?), (80)

with A,=1. The solutions shown should actually be in-
terpreted as being in terms of the primed variables, but
the primes have been omitted for simplicity. If we define
the initial pulse width L to be the full width at half max-
imum, then from Eq. (80) we have L;,=3.73/4,. Hence,
for the values Q,= A4,=1 used in Figs. 1-3, we have
Q,Ly=k 10—277'10 /A,=3.73, which corresponds to
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Iy /kp ~0.6, i.e., the initial pulse width is smaller than the
plasma wavelength. It is evident that the initially sym-
metric pulse distorts and broadens, with the peak moving
to the left while the portion of the pulse in front of the
peak continually broadens, extending from the peak into
a region of increasing, positive §. Since £ is proportional
to the spatial coordinate in the linear group velocity
frame, Fig. 1 shows that the peak travels at a velocity less
than the linear group velocity. Moreover, as the pulse
evolves from the initial condition, it approaches a charac-
teristic shape which has a steep trailing edge and a much
broader front portion with a relatively gentle slope.
These characteristics can be understood quahtatively by
referring to Fig. 3, which shows the potential o). Tak
ing as an example the time 7=32, Fig. 3 shows that ¢{*’ i

small in the broad front portion of the pulse. Therefore,
the nonlinear term Q245" 4{" in Eq. (45) is small so that
the right-hand portion of the pulse evolves almost linear-
ly, i. e ) it spreads to the right due to the dispersive term
Q2 4}, in Eq. (45). In the region in which the peak and
the rear part of the pulse lie, Fig. 3 shows that P is rela-
tively large, so the nonlinear term in Eq. (45) is apprecia-
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FIG. 1. The magnitude of the lowest-order normalized vector
potential for ,=1 and an initial condition given by
AV(Er=0)= Aosech AyE/2'?) with 4o =1. In this case, the
initial pulse length to plasma wavelength ratio is /5 /A, =0.6.
For ease of computation, the solutions in Figs. 1-3 are based on
parameters , and 4, which result in amplitudes and spatial
and temporal scales of order unity (referred to as primed vari-
ables in the text). However, Figs. 1-3 are directly applicable to
more physically realistic numerical values and scales by scaling
the variables according to Egs. (79) with e << 1.
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FIG. 2. The phase a of 4!’ corresponding to the same con-
ditions as in Fig. 1. The almost-linear darker section of each
curve indicates the region in which the peak and rear of the
pulse lies.

¢ 7

SE o

oo T R
Hmn

s

=

Jogmom
-l

e

‘.
ML T T

_15 L i 1 L L 1 1
40 3 2 -0 0 10 20 30 40

FIG. 3. The lowest-order normalized potential ¢{*’ corre-
sponding to the same conditions as in Fig. 1.

ble. Letting
AV =p(&,TIexplialé, )], (81)

where p and «a are real, the frequency shift is
AQ=—03a /3T =eNyda /O —€*da /37, where Eq. (19)
has been used. Using Eq. (26), we obtain the lowest-order
frequency shift (order €) as AQ=~eda/3&. Furthermore,
the wave-number shift is AK =0a/90Z =eda /3§, where
Eq. (20) has been used. Thus the lowest order (order ¢)
frequency and wave-number shift are equal and given by

AQ=AK ~a; , (82)

where we have let e=1. The equality of the lowest-order
frequency and wave-number shift is consistent with the
linear dispersion relation (10), which gives
dQ=QdK ~dK, where the lowest order result Q,=1
from Eq. (26) has been used. Moreover, equal frequency
and wave-number shifts produce a group velocity shift
which can be calculated from the linear dispersion rela-
tion (10) which gives the group velocity
Q'=(1-02/9%)"'2 Letting Q=0,+AQ, where AQ is
the frequency and wave-number shift, and noting from
Eq. (25) that to lowest order 3=1, we obtain
Q’zl—ﬂz /2+QZ AQ. Therefore, the frequency and
wave-number shift AQ given by Eq. (82) produces a
group velocity shift given by

AQ)=QAQ=Qa, . (83)

Figure 2 shows the phase a of 4! obtained numerically
for the same ), and initial condition as in Fig. 1. Since,
according to Eq. (82), the frequency and wave-number
shift are given by the slope of the curves in Fig. 2, it may
be verified from Figs. 1 and 2 that the slope a; is negative
in the region in which the peak and the rear part of the
pulse lie, which therefore, according to Eq. (83), gives a
negative group velocity shift, explaining the leftward
movement of the peak and the rear of the pulse in Fig. 1.
It is also evident from Figs. 1 and 2 that an appreciable
part of the front of the pulse lies in the region in which
ag>0, which produces a positive group velocity shift,
thus explaining the rightward spreading of the front of
the pulse in Fig. 1. Moreover, it is evident from Fig. 1
that the portion of the pulse containing the peak and the
back of the pulse does not spread appreciably as it moves
to the left, in contrast to the front of the pulse which con-
tinually spreads to the right with time. This behavior is
consistent with Fig. 2, which shows that, at a given time
7, the peak and the rear part of the pulse lie in a region in
which the slope a; is approximately constant with respect
to £. Therefore, all of this part of the pulse moves to the
left with a common group velocity. On the other hand,
Figs. 1 and 2 show that the broad front of the pulse al-
ways lies in a region in which the group velocity shift
changes appreciably with &, thus explaining the spreading
of this part of the pulse.

In summary, the solutions of Egs. (45) and (50) as
shown in Figs. 1-3 indicate that for the initial condition
given by Eq. (80), the weakly nonlinear laser pulse con-
tinually spreads as it moves through the plasma if the ini-
tial pulse width is less than the plasma wavelength.



1256

Three important features of the pulse propagation are the
following:

(1) The spreading is confined primarily to the front
portion of the pulse and is due essentially to linear disper-
sion produced by the term Q 4} in Eq. (45). The non-
linear term Qﬁ ) 41 s relatively small near the front of
the pulse, as shown by a comparison of Figs. 1 and 3.
The spreading of the front of the pulse is therefore essen-
tially a linear phenomenon.

(2) The portion of the pulse containing the peak and
the rear of the pulse suffers very little spreading and
moves with a group velocity less than the linear group ve-
locity. This lack of spreading is due to the nonlinear
term Q2¢’ 4" in Eq. (45), which combines with the
dispersive term QZ A (llg)g to give, at a given time 7, a group
velocity shift which is remarkably independent of £ in the
region in which the peak and rear of the pulse are locat-
ed.

(3) The frequency and wave-number shift vary from a
positive value at the front of the pulse to a negative value
at the rear. The peak of the pulse has a negative frequen-
cy and wave-number shift. The positive frequency and
wave-number shift near the front of the pulse is primarily
a linear phenomenon, where the negative frequency and
wave-number shift near the peak and rear of the pulse is
due to a combination of linear and nonlinear effects.

It should be emphasized that these characteristics have
been shown to apply to weakly nonlinear pulses. For a
strongly nonlinear pulse, nonlinear effects may dominate
throughout most of the pulse, which can produce a pulse
shape and a frequency shift which differ significantly
from those found for the weakly nonlinear pulse [17,19].
Moreover, for an initial condition different from Eq. (80),
the evolution of a weakly nonlinear pulse may differ from
that found here.

As has been noted in Ref. [20], for example, relativistic
effects have a profound influence in laser-plasma interac-
tions. Indeed, if the electrons are treated nonrelativisti-
cally, it can be shown that an additional nonlinear term
—302|4{"|24{" /2 appears on the left-hand side of Eq.
(45), which would produces significant changes in the be-
havior of the solution. Moreover, in the long-pulse case
treated in Sec. III, the neglect of relativistic effects causes
the coefficient of the nonlinear term in the NLS equation
(76) to change from Qf, /2 to —QIZ, /4, so that the
coefficients of the dispersive and nonlinear terms have op-
posite signs. In that case, the NLS equation does not
have the usual “bright” soliton solution (78) which
represents a localized, traveling region in which the en-
velope intensity is larger than zero, but instead has only
“dark” soliton solutions which represent an envelope in-
tensity dip in a continuous-wave background [16,21,22],
and can be called an envelope hole. Thus, it is apparent
that relativistic effects are of crucial importance in the
proper description of a laser pulse in a plasma.

The phase velocity of the wake is of interest in the ac-
celeration of charged particles by the wake field. The
solution of Eq. (50) is given by [7]

PiE,m=0, f:dg’]A(l“(é",'r)lzsin[ﬂp(g’—é‘)] .84
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If the entire pulse were to travel with a single velocity,
Eq. (84) shows that the wake field would travel at that ve-
locity. Figure 1 shows, however, that different parts of
the pulse travel at different velocities. To determine the
relationship between the pulse and wake-field velocities,
we consider the locations of the maximum value of
| 4{"], and the first and second maxima of ¢{*', denoted
by &,., &1, and &,, respectively. Figure 4 shows the veloci-
ty d&,,/dr, d&,/dt, and d§&,/dT of these maxima ob-
tained numerically for the same parameters and initial
condition as in Figs. 1-3. It is evident that, after an ini-
tial transient period during which the pulse shape adjusts
from the symmetric initial condition to the characteristic
asymmetric shape discussed previously, the three veloci-
ties are very nearly equal. This indicates that it is a good
approximation to assume that the wake-field phase veloc-
ity is the same as the velocity of the peak of | 4{"]. As
was discussed previously, the velocity of the peak of
| 4{V| is modified from the linear group velocity Q) be-
cause of the group velocity shift given by Eq. (83). Figure
5 shows the velocity d§,, /dt for the peak of A, to-
gether with the group velocity shift Qf,(ag)m, obtained
from Eq. (83), where (a;),, is the nonlinear frequency and
wave-number shift evaluated at the location of the peak.
The agreement is quite good, which verifies that the nega-
tive frequency and wave-number shift are responsible for
the backward movement of the peak of the pulse in Fig.
1.

Figures 6 and 7 show the evolution of | 4{"| and ¢{*
for the case of Io/kp ~0.3, i.e., for a pulse whose initial
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FIG. 4. Velocity d£,, /d T of the maximum of | 4{"|, and the
velocities d&,/d T and d&,/d 7 of the first and second maxima of
¢2 corresponding to the same conditions as in Fig. 1.
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FIG. 5. Group velocity shift Q2(3c/9£),, at the peak of
| 41| compared with the velocity of the peak d&,, /dt for the
same conditions as in Fig. 1.

width is substantially smaller than a plasma wavelength.
It is evident that | 44" | again approaches an asymmetric
shape which has the same characteristics found for the
longer initial pulse shown in Fig. 1, which include a grad-
ually sloping front portion and a trailing edge with a
steeper slope. In this case, however, the time scale re-
quired to reach the characteristic shape is larger. Again,
the wake-field phase velocity is found to approximately
coincide with the velocity of the peak of | 4 (1” |
We have also carried out calculation of 4" and ¢{?
for other values of /;,/A, and for some other functional
forms for the initial pulse (e.g., rectangular). In the cases
we have considered, | 4 (1])| approaches a shape which is
qualitatively similar to that shown in Figs. 1 and 6 for
large 7, provided /, /A, is not large compared with unity.
If the last two terms (the dispersive and nonlinear
terms) on the left-hand side of Eq. (45) are of the same or-
der of magnitude, the characteristic time on which the
envelope 44" changes is 7,~L?%/ Q,z,, which in unnormal-
ized variables is t,~(ko!)Xw/w,)/w,. The one-
dimensional model requires that the laser-beam
diffraction time t; ~mr?/Ac be long compared with z,,
where 7, is the laser spot size. This condition is satisfied
if
ro /A, >>1/\ . (85)
Since the analysis presented here is based on the assump-
tion that //A>>1, the condition (85) is more stringent
than the condition 7, /A, >>1 given in Ref. [7].
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FIG. 6. The magnitude of the lowest-order normalized vec-
tor potential for Q,=0.5 and an initial condition given by
A&, 7=0)= Agsech( 44£/2'?) with A,=1. In this case, the
initial pulse length to plasma wavelength ratio is /5 /A, =0.3.
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FIG. 7. The lowest-order normalized potential ¢§*' corre-

sponding to the same conditions as in Fig. 6.
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V. ENERGY VARIATION OF THE LASER PULSE

We calculate the energy in the laser pulse. The nor-
malized energy density is given by

=LE*+B*+Qn4?), (86)

where w, E, and B are the energy density, electric-field,
and magnetic field normalized to (in SI units)
€olkoc?my/e)?, koc’mgy/e, and kocmg/e, respectively,
and (,, n, and A4 are the normalized plasma frequency,
electron density, and vector potential as defined in Sec.
II. We evaluate w through order €. Because Q, and A
are, to lowest order, of order ¢, the term anAf due to
kinetic energy of the electrons, is of order €* and is
neglected. Using Eqgs. (19), (20), (25), (26), (30), and (31),
the electric and magnetic fields through order 62 are

E=—Ar=edy’'+e(4P+4P), (87)
B=A4,=—E . (88)

The energy density (86) in this approximation is therefore
w=E?2 Using Egs. (30), (31), and (87), we obtain the
time-average energy density i, through order €

w:2[€21A(11)|2_+_63(A(11)A(12)*_|_A(11)*A(12))
A4 . (89)

The laser pulse energy is W (r =fme(§ 7)d &, which,
upon differentiation with respect to time, yields

_631.( A(llé')A(ll)*

:2]‘_@ (AP 2) (A DA 4 g0 420)

—i(A A" —a*4V) 1dE, (90)
where, for simplicity, we have let e=1. With the use of
the coupled equations for 4" and ¢{*, and 4!? and ¢4,
given in Sec. II, it is shown in Appendix B that Eq. (90)
becomes

Y 0z [ | AP Poas o1)
Using Q7| 4{">=¢{Z: + Q26 from Eq. (50), Eq. (91)
becomes

dw o

St I (R TSR

:%[(¢(2)

The contrlbution from the upper limit vanishes because
sy —q& =0 ahead of the laser pulse. At the lower limit
¢(2) satlsﬁes Eq. (50) with | 4{V|>=0, whose solution is
¢ 2)—<I>ocos[ﬂ (§—£&y)], where @ is the amplitude of the
wake potential behind the pulse and &, is a function of 7.
Equation (92) therefore becomes

aw _
dr

Equation (93) is simply a statement of conservation of en-
ergy. To lowest order, the energy density in the wake is
(E*+Qju?)/2=Q)®j/2, where Eq. (43) and E = — ¢’
have been used. To lowest order, the pulse travels w1th

+Q;(6511=, . 92)

—10707 . (93)
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velocity Qy=1. Thus, in a time dr, the wake energy in-
creases by Q2 ®3d7/2, and therefore the pulse energy de-
creases by that amount, as verified by Eq. (93).

For a short pulse (,L =k, <<1), Eq. (84) yields the
approximate result

o~ — 10, Wsin[Q,(E—£)] , 04

where, from Eq. (89), W is the pulse energy to lowest or-
der given by

w=2f"

and & is the location of the pulse. Hence, the amplitude
of the wake potential is ®,=Q,W /2, whereby Eq. (93)
becomes dW /dr= *Qz w?/8, whlch yields the pulse en-

ergy
W=(Ww;!

Di2de (95)

+Qir/8)71, (96)

where W, is the pulse energy at 7=0. Thus, at large 7,
the pulse energy decreases inversely with time.

Equation (91) can be written m an alternatxve form by
using Eq. (43) to obtain ¢('=|A4{"|2—n{¥, whereby Eq.
(91) becomes

dT "f
:—‘sz

The density perturbatlon generated by the laser generally
has n} >0 in the region where |4{"]|?#0, so that
dW /drT<0. However, if the laser pulse interacts with
the region of a negative density gradient of an externally
generated plasma wave, Eq. (97) shows that the pulse en-
ergy increases.

(144 72)— 14V 1Pn@ 1dE

14V Pngpdg 97

VI. FREQUENCY VARIATION
OF LASER PULSE

We investigate the relationship between the pulse ener-
gy and frequency. Inserting Eq. (81) into Eq. (45), and
separating the real and imaginary parts, we obtain

pa,+1Q2[plag)?—pg—op]=0, (98)
(p?),+ Q) (p%a)=0 . (99)

Solving Eq. (98) for ¢’
Eq.(91), we obtain

dW _ e
Pl

, and inserting the result into

[2p2aT§+ Qﬁpz[(ag)z]g—ﬂ pz(pgg/p )e}d§ .

(100)

The contribution from the last term in the integrand van-
ishes on integration by parts From Eq. (99) we obtain

Q2p?=—(a,)” lf (101)

Substitution of Eq. (101) into the second term in the in-
tegrand of (100) yields

E‘L;V‘ =27 {Pzaré‘aégf_gw(l"

2),d§]d§. (102)
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Integration of the second term in the integrand in Eq.
(102) by parts gives (with p=| 4{"])
aw d
aw _, ¢ (D)2 )
dr dr v —w ! 4 ! I agdg
From Eq. (82), the lowest-order (order €) frequency shift
is AQ=«a & which varies over the pulse as shown, for ex-

ample, in Fig. 2. We define the average frequency shift of
the pulse as

Ra=[" |ai"Paade /[ 7 |4 Pag .

Noting from Eq. (B2) that the pulse energy to lowest or-
der, as given by Eq. (95), is a constant, and inserting Eq.
(104) into (103), we obtain

1 dW _ d(AQ)
W dr dr

The average frequency of the pulse is (_)=QO+A_Q, which
to order € is Q=1+AQ, where Eq. (25) has been used.

(103)

(104)

(105)

Thus, to lowest order, Eq. (105) becomes
dW /W =dQ/Q, which gives
—(—I;/- =const , (106)

which is the well-known relationship between frequency
and energy in a closed oscillatory system subjected to a
slow adiabatic transformation. Equation (106) gives the
result that the average frequency for the laser pulse con-
tinually decreases as it loses energy to the wake.

It was shown in Sec. IV that the wake-field phase ve-
locity is approximately equal to the velocity of the peak
of | 4{"], which in turn travels at the linear group veloci-
ty reduced by the modification due to the nonlinear fre-
quency shift. As predicted by Eq. (106), the pulse fre-
quency decreases, so the velocity of the peak of | 4{"]
and the wake-field phase velocity will also decrease with
time.

Using Egs. (97) and (105), one obtains

d(} o o
<o =—10; f_w|A‘,l’|2n{)2§>d§/fw|Ag“|2d§ :
(107)

which relates the frequency variation to the density gra-
dient. For a pulse which is short compared with the scale
length of the density gradient, Eq. (107) becomes
dQ/dr= —Q;né,? /2, which is equivalent to the result of
Ref. [6].

VII. COMPARISON WITH QUASISTATIC
APPROXIMATION

Sprangle, Esarey, and Ting [7] have used a quasistatic
approximation to study a laser pulse in a plasma. In this
approximation, time derivatives are neglected in the plas-
ma equations (4) and (5) after they are transformed to the
speed-of-light frame. It is of interest to determine the
effect this approximation has on the present analysis, and
to compare the approximate and exact results. In the
present notation, Eqgs. (3c) and (3d) of Ref. [7] in the
speed-of-light frame are
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[n(1=u)]e=n_, (108)
[y(A=u)—¢le=—(yu),, (109)

where £’=Z —T and 7'=T. The relationships between

the variables £, 7' and those defined in Eqs. (16)—(18) are
E=et'+e(1—QH)r', O=E+(1—Qy)r’, and 7=¢€'7,
which give
9 _ 93 2
ag'_ae+ea§ , (110)
d d a
—=(1—Q¢) =~ —Q ——+ 4= 111
3 ( o) 69 0) 3¢ €— (111)

If we make the quasistatic approximation [7] by neglect-
ing the right-hand sides of Eqs. (108) and (109), and use
Eq. (110), Egs. (108) and (109) can be written as

(n(Qo—u)lgte[n(Qo—u)le
=—(1—Qng—e(1=Qpn, , (112)
[y(1—=Qou)—¢lo+ely(1—Qou)—¢],
=(1—Qo)yu)gte(1—Qo)yu). (113)

Comparison of Egs. (23) and (24) with (112) and (113)
shows that the quasistatic approximation consists of re-
placing the right-hand sides of Egs. (23) and (24) by the
right-hand sides of Egs. (112) and (113), respectively.
Noting that the lowest nonvanishing terms in the expan-
sions of n, yu, 1—Q, and 1—Q; are of order €, it fol-
lows that the rlght-hand sides of Egs. (23) and (24) vanish
at any order less than €%, whereas the right-hand sides of
Egs. (112) and (113) Vamsh at any order less than €*
Therefore, the expansions of n and u based on the quasi-
static equations (112) and (113) are expected to differ
from those based on Egs. (23) and (24) beginning at order
€*. Indeed, by carrying out the reductive perturbation
expansion based on Egs. (21), (22), (112), and (113), it is
found that n®, ¥®, n®, and u(3’ are unaffected by the
quasistatic approximation, but that n® and 4@ are
changed in that the last term 012,(1—80, )n? /2 in both
Egs. (70) and (71) is absent in the quasistatic approxima-
tion, which yields the result that the quasistatic approxi-
mations of n§", u$¥, nt¥, and u’* are in error, but that
u'® is exact. Although the equation governing A 3 has
not been given explicitly, it is obtained from the /=1
terms in Eq. (62). Examination of this equation shows
that its right-hand side depends on n‘¥, from Wthh 1t
follows that Am depends on rn'Y) which causes A
found from the quasistatic approximation, to be in error.
In addition, it is found that, through order e the quasi-
static approximation produces error in A4 {* A(5 A5,
#5Y, and ¢5. Thus, if an accuracy of order €?in 4, and
€’ in n, u, and ¢ is sufficient, then the quasistatic approxi-
mation is adequate in predicting the behavior of a weakly
nonlinear laser pulse in a plasma. However, if it is
desired to have an accurate estimate of a quantity which
appears only at higher order in the expansions, such as
the third harmomc of the vector potential, which appears
first at order €, then the quasistatic approximation is
inadequate. In fact, | 45| from the quasistatic approxi-
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mation is found to be a third of that given by Eq. (64).
Thus the power in the third harmonic is larger by a fac-
tor of 9 than that derived from the quasistatic approxi-
mation.

VIII. SUMMARY AND CONCLUSIONS

We have carried out a perturbation expansion to solve
the equations describing a linearly polarized weakly non-
linear laser pulse propagating in plasma in which the
electrons are treated relativistically and the ions are as-
sumed stationary. It is assumed that w,/w;<<1. The
model is one dimensional in that the spatial dependence
on the coordinate perpendicular to the direction of prop-
agation is ignored. The use of the reductive perturbation
method results in a hierarchy of equations which can be
solved to obtain the solution to any desired order in the
expansion parameter €. The first level of the hierarchy
yields two coupled equations for the envelope of the
lowest-order vector potential 4! and the lowest-order
scalar potential ¢{*’. From these equations, it is shown
that, for a laser pulse whose spatial extent is long com-
pared with a plasma wavelength, 4" satisfies the NLS
equation, which admits closed-form soliton solutions.
These long-pulse solitons would probably not be observ-
able experimentally, however, because parametric insta-
bilities occur on a time scale which is shorter than the
soliton time scale.

For a pulse which is not long compared with a plasma
wavelength, the coupled equations are solved numerical-
ly. It is shown that the symmetrical initial pulse given by
Eq. (80) broadens and evolves into a characteristic
asymmetrical shape which has a gradually sloping front
and a relatively steep rear. A frequency and wave-
number shift is produced, which varies spatially over the
pulse, being positive near the front of the pulse, but nega-
tive over the remainder of the pulse. Pulse broadening is
confined primarily to the front portion of the pulse and is
due mainly to linear dispersion. The peak and rear part
of the pulse travel more slowly than the linear group ve-
locity because of the negative frequency and wave-
number shift which exists in that part of the pulse. Fur-
thermore, the peak and rear part of the pulse are strongly
influenced by the plasma nonlinearity, in contrast to the
essentially linear behavior of the front portion. It is also
shown that the wake-field phase velocity is approxima-
tion equal to the velocity of the pulse peak.

An equation governing the pulse energy is derived
whose solution shows that the energy of a short pulse de-
creases inversely proportional to time due to energy
transfer to the wake. Moreover, it is shown that, al-
though the frequency shift varies over the pulse, the aver-
age pulse frequency is directly proportional to the pulse
energy, so that as the pulse loses energy to the wake, the
average pulse frequency continually decreases, as well as
the phase velocity of the wake field.

The accuracy of the quasistatic approximation, as ap-
plied to the weakly nonlinear case, is assessed. It is found
that the quasistatic approximation gives results which are
accurate through order €? in the vector potential 4 and
through order € in the electron density n, longitudinal
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electron velocity u, and potential ¢. Since at lowest order
A is order €, and n, u, and ¢ are order €2, the quasistatic
approximation gives correct results to one order greater
than lowest. Also, it is found that the third-harmonic
power is underestimated by the quasistatic theory by a
factor of 9.

Since the results derived are based on a one-
dimensional model, their validity depends on the trans-
verse dimensions being sufficiently large; the quantitative
condition is given by (85). If (85) is not satisfied, trans-
verse diffraction and self-focusing may be important and
should be included in the theory.

APPENDIX A: LINEAR SOLUTION

In order to determine the proper scaling of the vari-
ables for a weakly nonlinear laser pulse, we consider the
linear case. The general solution for any field component
f of a linear dispersive mode is

f=[7 Floexp{ilkz—w(k)t l}dk , (A1)

where w =w(k) is the dispersion relation. For a pulse of
length / with most of the energy in wave numbers close to
some value k,, F (k) is concentrated in the range ~]71
near ky, and (Al) may be approximated by
f=¢explilkyz—wyt)], where the envelope ¢ is given by

¢= [ 7 Floexp{i[(k —ko)z —wgt)
—wg(k —ky)t/2)}dk ,  (A2)

and where wy=w(ky), wy=0w(ky)/dk,, and
w0y =d%w(ky)/dk3. We assume that the pulse is broad
compared with the carrier wavelength, i.e.,

kol >1 . (A3)
We normalize the variables in Eq. (A2) according to
K=k/ky, Q=w/0,, k=kil(K—1), (A4)
Z=kyz, T=wyt, (AS)
whereby Eq. (A2) becomes
¢=1""[" F|kq 1+k—’;7
Xexp |i -K—(Z—QaT)—mi ]dK ,
kol 2(kyl)?
(A6)

where Q(=0Q(K,)/3K,=(ko/wy)wy, Qb =3*QK,)/
8K 3 =(k3/wy)wy. The function F is appreciable only in
the range |k —k,| <1~ ! which corresponds to |k| <1, i.e.,
k is of order unity or less in the region in which the in-
tegrand in Eq. (A6) is appreciable. Letting
(kol) !'=e<<1, it is evident from Eq. (A6) that the en-
velope ¢ is a function of the two variables

«(Z—,T), Q)T . (A7)

In many problems of physical interest, the normalized
group dispersion Qg is of order unity, and therefore the
appropriate second variable in (A7) is €27 [10,11]. How-
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ever, for a laser pulse in a plasma, the linear dispersion
relation is w2=wf,+k2c2, which, with the use of Egs.
(A4) becomes

QP =(K*+w}] /kje?) /(1+ok /kic?) , (A8)
from which we obtain
Q6 =(o} /k§c?) /(1+ 0} /kic?) . (A9)

If we assume that w, <<kgc, as is usually the case in
laser-plasma interactions [7-9], Eq. (A9) gives
Qy =(w, /koc )Zz(wp /wg)*<<1. If we assume that
(0, /wy)? is of order €, then (A7) shows that the ap-
propriate second variable is €*T for the case of a laser
pulse in a plasma if the laser frequency is large compared

with the plasma frequency.

APPENDIX B: SIMPLIFICATION OF EQ. (90)

In order to show that Eq. (90) can be reduced to Eq.
(91), we multiply Eq. (45) by 4{"’*, and subtract from the
result its complex conjugate to obtain
(AP A4 +102(4* 4 — 4P 4P*),=0. B
Integration of Eq. (B1) yields

o d ]
(D2 - a (D29 f=
fqul M dE=—- f_wIA, l2de=0, (B2)

where it has been assumed that 4{" and 4 ‘115) vanish at
£=to. Equation (B2) states that [*_ |A4{"[|%d& is a
conserved quantity.

We multiply Eq. (61) by 4{"*, and subtract from the
result its complex conjugate to obtain

(AP AR+ 4P AP)+102(4F 40— AP al)
+%Q12;¢§)2)(A(12)A(11)*—A(IZ)*A(II))
=—Ai A" +4praV . (B3

We multiply Eq. (45) by 4{¥*, and subtract from the re-
sult its complex conjugate to obtain

P(APAP*+ A AP+ 1024 AP — A 47)
+102¢2( A4V AP* — 4P 4P)=0. (B4
The sum of Egs. (B3) and (B4) can be written as
(AP AP+ 4 4P,
=i%Q;(A(11)*A(12§)“A(12)A(11§)*
+A“2’A(11§)——A(1”A(12§’* )e

+i(Al A — A4 . (BS)
Substitution of Egs. (B2) and (B5) into Eq. (90) yields
% =2i [7 (a(aipr — 4t a)dg, (B6)

where it has been assumed that 4", 4,,, 41>, and 4{?

vanish at £=xc. Substituting A4{)=i(Q2/2) (4},
+¢ 4(V), from Eq. (45), into Eq. (B6), we obtain

W -
——‘ZT =—Q? f_w[( AR AR AP (AP 4% 1dE
(B7)

The first term on the right-hand side integrates to zero.
Integrating the second term by parts gives Eq. (91).
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